Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro.
نویسندگان
چکیده
The anthracycline antibiotic doxorubicin produces a characteristic myopathy in cardiac muscle that limits its use in cancer therapy. We have shown in cultured neonatal rat cardiac muscle cells that doxorubicin treatment resulted in a rapid, selective decrease in the expression of muscle-specific genes, which preceded other changes characteristic of doxorubicin cardiomyopathy. Doxorubicin selectively and dramatically decreased the levels of mRNA for the sarcomeric genes, alpha-actin, troponin I, and myosin light chain 2, as well as the muscle-specific, but nonsarcomeric M isoform of creatine kinase. However, doxorubicin did not affect nonmuscle gene transcripts (pyruvate kinase, ferritin heavy chain, and beta-actin). Actinomycin D, an inhibitor of DNA-dependent RNA polymerase, did not show a similar selective decrease of muscle-specific mRNAs but, rather, produced a nonspecific, dose-dependent decrease of muscle and nonmuscle transcripts. The doxorubicin effect on muscle gene expression was limited to cardiac muscle; cultured skeletal myocytes were resistant to the effects of doxorubicin at 100-fold greater doses than those causing changes in mRNA levels in cardiac muscle cells. These effects of doxorubicin were reproduced in vivo; rats injected with doxorubicin showed a dose-dependent decrease in the levels of mRNAs for alpha-actin, troponin I, myosin light chain 2, and M isoform of creatine kinase in cardiac but not skeletal muscle. These selective changes in gene expression in cardiocyte cultures and cardiac muscle precede classical ultrastructural changes and may explain the myofibrillar loss that characterizes doxorubicin cardiac injury.
منابع مشابه
Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملAntineoplastic agent doxorubicin inhibits myogenic differentiation of C2 myoblasts.
Doxorubicin (Dox, adriamycin), an antineoplastic agent that can cause dilated cardiomyopathy, selectively inhibits muscle-specific gene expression in rodent cardiac muscle cells. This study shows that Dox treatment of proliferating C2 myoblasts, an established cell line from mouse skeletal muscle, completely prevents both fusion and accumulation of muscle-specific gene transcripts without signi...
متن کاملEffect of Three Therapeutic Methods of Exercise, Ozone, and Stem Cells on the MEF2C Expression and Myostatin Levels in Femoral Muscle Tissue of the Osteoarthritis Rats
Aims Myostatin and Myocyte Enhancer Factor 2C (MEF2C) are involved in muscle changes associated with bone problems. The aim of the present study was to determine the effect of three therapeutic methods of exercise, ozone, and stem cells on MEF-2C gene expression and myostatin levels of femoral muscle tissue in osteoarthritis rats. Methods & Materials This experimental study was done on 63 male...
متن کاملPhenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model
The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...
متن کاملPhenethyl isothiocyanate Triggers Apoptosis, Combats Oxidative Stress and Inhibits Growth of Ehrlich Ascites Carcinoma Mouse Model
The aim of this study is to investigate the antitumor activity and possible molecular mechanism of Phenethyl isothiocyanate (PEITC) against Ehrlich ascites carcinoma in-vivo and in-vitro.In-vivo, ascetic fluid volume, body weight, serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined using Ehrlich ascites carcinoma (EAC) bearing mice. In-vitro, MTT assay was use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 11 شماره
صفحات -
تاریخ انتشار 1990